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The number of horizontally drilled shale oil and gas wells in the
United States has increased from nearly 28,000 in 2007 to nearly
127,000 in 2017, and research has suggested the potential for the
development of shale resources to affect nearby stream ecosystems.
However, the ability to generalize current studies is limited by the
small geographic scope as well as limited breadth and integration of
measured chemical and biological indicators parameters. This study
tested the hypothesis that a quantifiable, significant relationship
exists between the density of oil and gas (OG) development,
increasing stream water concentrations of known geochemical
tracers of OG extraction, and the composition of benthic macro-
invertebrate and microbial communities. Twenty-five headwater
streams that drain lands across a gradient of shale gas develop-
ment intensity were sampled. Our strategy included comprehen-
sive measurements across multiple seasons of sampling to account
for temporal variability of geochemical parameters, including known
shale OG geochemical tracers, and microbial and benthic macro-
invertebrate communities. No significant relationships were found
between the intensity of OG development, shale OG geochemical
tracers, or benthic macroinvertebrate or microbial community com-
position, whereas significant seasonal differences in stream chemistry
were observed. These results highlight the importance of considering
spatial and temporal variability in stream chemistry and biota and
not only the presence of anthropogenic activities in a watershed.
This comprehensive, integrated study of geochemical and biological
variability of headwater streams in watersheds undergoing OG
development provides a robust framework for examining the effects
of energy development at a regional scale.

Marcellus Shale | hydraulic fracturing | water quality | microbiology |
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The development of unconventional oil and gas (OG) re-
sources over the past decade has led to a drastic increase in

the importance of natural gas as an energy resource. This change
has perhaps been most notable for the Marcellus Formation in
Pennsylvania, where production has increased from 193 billion
cubic feet (BCF) per year in 2006 to nearly 5,500 BCF per year in
2017 and now accounts for nearly 20% of total natural gas
production in the United States (1). In Pennsylvania, these in-
creases in production have come with an increase in the number
of horizontally drilled, hydraulically fractured wells, which have
increased from 3 in 2006 to 7,977 in 2017 (1). Numerous activ-
ities associated with OG development and production, including
unintentional releases of hydraulic fracturing fluid and waste
water, erosion, and sedimentation due to the construction and
operation of well pads, pipelines, and unpaved roads, as well as
increased road use and releases in the course of waste disposal,
can pose potential risks to surface water (2–7). A growing body
of studies has investigated the ecological effects of OG production;

however, no clear consensus has emerged, and the comparability
of the studies is limited, due to variations in study design; the
confounding effects of regional differences in land use, geology,
and regulation; and a lack of long-term baseline data. The effects
of regional and temporal heterogeneity were recently highlighted
by Knee and Masker (8), whose comparative study of water
geochemistry in southwestern Pennsylvania and western Maryland
was unable to definitively link observed changes in geochemical
composition to OG development in the face of differences among
historic and current land use and potential seasonal differences.
Hydraulic fracturing fluid is a complex mixture of water, sand,

hydrocarbons, surfactants, biocides, and a wide array of proprietary
compounds designed to enhance fracturing of and production from
the hydrocarbon bearing formation (9–12). Produced water is a
complex mixture of reservoir formation brines and injected fluids
which return to the surface over the lifetime of the OG well (13–
17). In general, and in the Marcellus Shale in particular, produced
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waters are highly saline and have a distinct elemental composition
in comparison to produced water from younger formations (16, 18–
23). Marcellus Shale-produced waters in north-central Pennsylva-
nia are described as Na−Ca−Cl brines characteristic of evaporated
seawater (15, 16), have concentrations of total dissolved solids
(TDS) in excess of 100,000 mg/L, and contain high concentrations
of Na, Ca, Cl, Li, B, Ba, Sr, and Br, which are useful as geochemical
tracers for the presence of produced water (24–29). Streambed
sediments have been shown to retain indicators of OG wastes in-
cluding Ba, Sr, and Ca when there are few detectable geochemical
tracers in stream water (25, 30); however, few studies have exam-
ined bed sediments at a regional scale.
Releases of produced water into surface water have led to

accumulation of metals in freshwater mussel shells (30) and are
reported to cause changes in streambed microbial community
structure (29, 31, 32). Benthic macroinvertebrate communities
are sensitive to changes in water quality, and changes in benthic
macroinvertebrate community structure have occurred in streams
in Arkansas within watersheds undergoing extraction of natural
gas from the Fayetteville Shale (33). Exposure to elevated salinity
is known to be toxic to benthic macroinvertebrates (34, 35).
Similarly, an increase in salinity, as would occur following a release
of produced waters, can have lethal effects on fish (36, 37). Case
studies following releases of produced water have suggested the
potential for such releases to effect microbial community structure
and function (29, 38); several studies detailing experimental ex-
posures to components of hydraulic fracturing fluid and produced
water have demonstrated this potential for alterations to microbial
communities (39–41). Furthermore, produced water and pro-
duced water impoundment ponds have distinct microbial pop-
ulations (13, 42–47), suggesting that microbial community profiles
may have a potential utility as biological tracers for produced
water. A group of studies focusing on northwestern Pennsylvania
have demonstrated changes in microbial community structure in
watersheds with OG activity when contrasted to similar water-
sheds without activity, and report that microorganisms capable of
using components of produced water and methane are found in
higher abundance in surface water and sediments in watersheds
with OG activity than in those without (31, 32, 48).
Shale gas development and production in the Pennsylvania

State Forests (PASF) provides an opportunity to study the ef-
fects of shale gas production on water quality and stream biotic
communities of headwater streams in an environment with few
other potential anthropogenic stressors. OG development is a
component of state forest management, with 74 OG lease sales
resulting in more than 2,000 OG wells being drilled in the PASF
since 1947. Of these, ∼500 are Marcellus Shale gas wells com-
pleted since 2008 (49, 50). Many headwater streams within the
PASF system are designated as protected use High Quality (HQ)
or Exceptional Value (EV) in state regulations (51). To manage
and protect the state forests and their water resources, the Bu-
reau of Forestry of the Pennsylvania Department of Conserva-
tion and Natural Resources (BOF) uses a robust and comprehensive
lease agreement combined with the Guidelines for Adminis-
tering Oil and Gas Activity on State Forest Land to manage this
development (50). Further, the BOF established a shale gas
monitoring program in 2011 that consists of an integrated moni-
toring team, on-the-ground management activities, and research
collaborations with external partners (49), and the findings from
this program inform the development of best management
practices (BMPs).
While the studies undertaken, to date, have improved our

understanding of the potential effects of OG development on
water quality and stream biota, none have coupled detailed trace
geochemical analyses with biological responses across a large
geographical area with consistent land use or accounted for
temporal variability over multiple years. This has limited the
ability to define quantitative linkages between OG development

and biological effects. Furthermore, it is challenging to extra-
polate the findings from case studies of extraordinary spill events
to predict potential regional impacts. This study hypothesizes a
quantifiable relationship between the density of OG develop-
ment and the water quality and biota of headwater streams in the
PASF system. We test this hypothesis by examining and inte-
grating stream water chemistry, sediment chemistry, benthic
macroinvertebrate community composition, and streambed mi-
crobial community structure across a gradient of OG develop-
ment intensity over the course of 2 y.

Study Design and Site Selection
The PASF system was chosen as the study area because it con-
tains a gradient of shale gas development under a consistent
regulatory structure while having only limited land use other
than recreation, timber harvesting, and OG development since
the early to mid 20th century (52). To select sites, we used the
12-digit Hydrologic Unit Code (HUC12; https://water.usgs.gov/
GIS/huc.html) watershed vulnerability scores from Entrekin
et al. (6). Entrekin et al. (6) computed vulnerability scores from
indices developed to describe watershed sensitivity and exposure
to natural and anthropogenic disturbances, including two mea-
sures of shale gas development (well density and proximity to
nearest stream), for six shale plays across the contiguous United
States. To categorize the HUC12 watersheds within the PASF,
we took the Entrekin et al. (6) vulnerability index for each
HUC12 watershed within the PASF system, binned them by
quintiles, and assigned each watershed to one of five categories
(Highest, High, Medium, Low, and None). Five streams with
similar surficial geology were then selected at random from each
category (Fig. 1, and see SI Appendix, Table S1 and Fig. S1 for
the distribution of conventional and shale gas wells). After the
first year of the study, a finer-scaled (1:24,000 catchments), more
regionally focused standardized Disturbance Intensity Index
(sDII) was published for the Pennsylvania portion of the Upper
Susquehanna River Basin (PAUSRB) (7), which improved upon
the Entrekin et al. (6) 2015 index by including upstream drainage
information on 17 measures of OG that incorporate all steps of
the development process (infrastructure, gas and waste pro-
duction, notice of violations [including spills], and water with-
drawals) (refs. 7 and 53 and SI Appendix, Tables S2–S4). For
each catchment in the PAUSRB, each OG metric was assigned a
rank based on the underlying distribution of the stressor in the
study, which was then multiplied by a weighting score that ranged
from one to three based on potential impact to a stream (7). The
land use and OG parameter data for the watersheds in this study
can be found in SI Appendix, Tables S2 and S3. The sDII was
then calculated for each catchment as the sum of weight-adjusted
scores, and standardized from 0 to 100 by dividing by the study-
wide maximum sDII. The sites were recategorized (highest, high,
medium, low, lowest) based on this finer-grained index of de-
velopment intensity in individual drainages rather than at the
HUC12 scale. These sDII scores and categories did not change year
to year (SI Appendix, Table S1) and were used for all statistical
analyses. The complete dataset used to construct the sDII is avail-
able from US Geological Survey (USGS) ScienceBase (53).
Abandoned mine drainage (AMD) is a known stressor to water

quality in Pennsylvania (54); therefore, two streams with sources
of AMD in their watersheds (55), Bark Camp Run (National
Water Information System [NWIS] ID 01542613) and Boone Run
(NWIS ID 015162658), were included to provide a geochemical
and biological signature of AMD stress. These AMD-influenced
streams were used to provide an initial screen and reference for
AMD but were not included in any other statistical analyses, as
their geochemical and biological composition could not be considered
comparable.
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Sampling Design. Streams were sampled during the spring and fall
of 2016 and 2017. Samples were taken in early spring to evaluate
water quality, benthic macroinvertebrate communities prior to
emergence, and microbial communities during spring snowmelt
and runoff. Fall samples were taken to evaluate water quality and
microbial community structure under base flow conditions.
Sampling for geochemical parameters and sediment microbial
community structure was carried out as described in refs. 28 and
29 (SI Appendix, Supplemental Item 1 and Tables S5 and S6).
Analytical procedures for determination of alkalinity, anions,
cations/trace metals, and nonvolatile dissolved organic carbon
are described in SI Appendix, Supplemental Item 1. Trace light
hydrocarbons in stream water, a measure of stray gas from
leaking well casings (56), were sampled, analyzed, and reported
in Haase et al. (57). Sediment samples were dried at 60 °C,
sieved to <2 mm, and digested as described by Environmental
Protection Agency method 3051A (58) prior to analysis for trace
metal composition by inductively coupled plasma−mass spec-
trometry (SI Appendix, Table S6). Macroinvertebrates were
sampled, subsampled, and identified according to the Pennsyl-
vania Department of Environmental Protection (PADEP) data
collection protocols (59) and assessment methods (60). While
this method does not generate quantitative macroinvertebrate
census data, it has been demonstrated to provide robust relative
abundance data at a sample-to-sample level (61). Sensitive
Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa metrics
were calculated using taxa with Pollution Tolerance Values of
0 to 4 as defined by PADEP (59, 60).
Microbial DNA was extracted from site sediments using the

Qiagen DNeasy PowerSoil Kit according to the manufacturer’s
instructions (Qiagen) prior to Illumina MiSeq sequencing of the
16S ribosomal RNA gene (SI Appendix, Supplemental Item 1).

Data Analysis. Data analysis was performed in R, using CORE
components and the VEGAN, PHYLOSEQ, and DPLYR packages
(62–65) (SI Appendix, Supplemental Item 4). Geochemical tracer
data were subjected to three-way ANOVA to separate the effects
of OG development from seasonal and annual variation (SI Ap-
pendix, Supplemental Item 4 and Table S4). Initial quality control,
alignment, and taxonomic assignment of microbial sequence data
were performed using MOTHUR v1.39.5, based on the Silva 128

nonredundant database (66–68) using the USGS Advanced
Research Computing (ARC) Yeti high-performance computing
facility (66, 69) (SI Appendix, Supplemental Item 2). Maximum
likelihood trees were constructed using RaxML and exaML (70,
71) (SI Appendix, Supplemental Item 3). To account for the re-
latedness of microbial taxa, weighted UniFrac distance matrices
(72) were used instead of Euclidean distance matrices for mi-
crobial community analysis.

Data Availability. Microbial sequence data are available from
the National Center for Biotechnology Information (NCBI)
GenBank database under BioProject PRJNA544240 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA544240) (73). Water chem-
istry data are available from the USGS NWIS, https://waterdata.
usgs.gov/nwis, using the NWIS identification numbers provided
in SI Appendix, Table S1 (74). Sediment chemistry data are
available as a USGS data release at https://doi.org/10.5066/
P9GJTRYR (75). Macroinvertebrate data are available from
PADEP.

Results and Discussion
Aqueous and Sediment Geochemistry. No significant relationships
were found among any of the measured parameters and the sDII
categories, although significant seasonal variation was observed.
Forty physical and chemical parameters were measured for this
study (SI Appendix, Table S5), and, of these, specific conduc-
tance (as a proxy for TDS) and dissolved Cl, Br, Ca, Na, Li, B,
Ba, and Sr are known as useful geochemical tracers of produced
water (24, 25, 28, 29, 76, 77). The pH was measured as a po-
tential indicator for acids used in shale gas well completion and
for potential effects on microbial and macroinvertebrate com-
munities (32, 33, 48, 78).
Seasonality was identified as the primary driver of variability in

water chemistry and produced water geochemical tracers, with
little variability observed between years or across the sDII gra-
dient. Streamflow was significantly higher in spring than in fall
(spring median 0.31 ± 0.41 m3/s, fall median 0.01 ± 0.06 m3/s,
t test P < 0.05), and specific conductance values were signifi-
cantly lower in spring than in fall (spring median 35.0 ± 12.2 μS,
fall median 62.7 ± 29.2 μS, t test P < 0.05). These data suggest
that precipitation and snowmelt comprised a larger proportion

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

PA State Forests

Sample Sites

Disturbance Intensty Index
lowest
low
mid
high
highest

0 10 20 30 405

Kilometers
Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the

GIS user community

Fig. 1. Location of study sites within the PASF system. The boundaries of the Marcellus Shale are shaded in blue, PASF land is shaded in gray, and 1:24,000
drainages are colored by sDII category. Sample locations are marked with yellow bull’s-eyes. Inset shows the extent of the Marcellus Shale in blue; the study
area is outlined in black. Image courtesy of Esri, HERE, Garmin © OpenStreetMap contributors, and the GIS user community.
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of the stream water in spring (Fig. 2 and SI Appendix, Table S4).
Water composition (SI Appendix, Table S7) did not significantly
differ across sDII categories (ADONIS, P = 0.71) or years
(ADONIS, P = 0.23) once the significant seasonal variation
(ADONIS, P < 0.05) was accounted for, suggesting that OG
development did not influence stream chemistry in the study
area. Analysis of water chemistry data by nonmetric multidi-
mensional scaling (NMDS) (Fig. 3) illustrates that the com-
position was less variable during the spring than in the fall,
presumably due to the greater influence of dilution with pre-
cipitation during the spring compared to the base flow condi-
tions found in the fall.
Ratios of Ca, Cl, Li, B, Br, Ba, and Sr concentrations have

been described as useful tools for identifying the presence of
produced waters in surface waters (24, 25, 28, 29, 76, 77). In this
study, the utility of these geochemical tracers was limited by low
occurrence above quantification limits across the study area. No
sample had a Br concentration above the reporting limit of
0.3 mg/L, B was measured above the reporting limit of 10 μg/L at
only three sites in the fall and none in the spring, and Li was
measured above the reporting limit of 1 μg/L at seven sites
during fall and five sites during spring. While this limited oc-
currence precludes the use of elemental ratios involving Br, B,
and Li to provide regional evidence for the presence of produced
water, it provides a strong indication that produced waters have
not influenced the streams in the study area despite the presence
of OG development. Chloride concentration did not differ be-
tween years or seasons (Fig. 2D); however, it was significantly
higher in the low sDII category than in the high sDII category
(ANOVA, Tukey’s honest significant difference [HSD] P =
0.02). The highest average stream Cl concentration, 6.9 ± 1.6 mg/L,
was observed at Slate Run (NWIS ID 01548615), which has no
OG development activity in the watershed but has more resi-
dential inholdings and greater road development, which may

provide a source of Cl (79). We found no relationship between
Ba/Cl ratios and sDII categories (ANOVA, Tukey’s HSD P >
0.05; SI Appendix, Fig. S2), and Ba/Cl ratios in all sDII categories
were significantly lower (ANOVA, Tukey’s HSD P < 0.05) than
those reported for Marcellus-produced water from this region
(SI Appendix, Fig. S2 and ref. 16). Produced water from this region
of the Marcellus Shale is reported to have higher Ba/Cl ratios
than elsewhere in the Marcellus Shale (16, 80). When the very
low concentrations of Cl and Ba in the study streams are taken
into consideration (Fig. 2 D and F), we would expect even a small
contribution of produced waters to result in measurable change.
That we found no significant changes in Ba/Cl ratios provides
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further indication that Marcellus-produced waters are not influencing
stream chemistry.
Heilweil et al. (56) describe trace light hydrocarbons as a tracer

for gas migration from faulty well casings, and were measured at
our sites during the spring and fall of 2016. The results from these
samples are reported in ref. 57. Concentrations above atmospheric
equilibrium were not observed in any of the samples (57), indicating
that gas from the Marcellus Formation is not actively entering the
streams within 1 km of the sampling points and suggesting that the
study streams are not being influenced by faulty well casings. These
findings are consistent with those of Barth-Naftilan et al. (81), which
reported no changes in groundwater methane concentrations that
could be linked to shale gas development.
The pH did not differ among sDII categories with or without

controlling for season or year, indicating OG development did
not have any significant effect on stream pH within our study.
The lowest pH value in the study (5.0) was observed in spring
2017 at Sebring Branch of Mill Run (NWIS ID 01548770), a site
in the lowest sDII category with no OG or historic mining activity
in its watershed and with the lowest observed specific conduc-
tance (14.7 μS/cm), suggesting that the low pH is a function of
local geology, hydrology, and/or precipitation. This contrasts the
findings of Chen See et al. (31), Trexler et al. (32), and Ulrich
et al. (48), which suggested that changes in pH resulting from
acids used in shale gas well completion were significantly related
to shale gas development in a similar geologic setting.
We evaluated the concentration of geochemical OG tracers in

streambed sediment (SI Appendix, Table S8), because they have
been shown to retain indicators of OG wastes when there are few
detectable geochemical tracers in stream water (25, 30). No
significant relationships among sDII categories and OG geo-
chemical tracer concentrations in streambed sediment were ob-
served, and the concentrations of OG geochemical tracers in
streambed sediments followed similar trends as those observed
in stream water (SI Appendix, Table S8). As was observed for
water chemistry, no significant differences were observed among
sDII, year, or season for sediment concentrations of Ba and Sr
(ANOVA, Tukey’s HSD P > 0.05), but significant seasonal dif-
ferences were observed for Li (ANOVA, Tukey’s HSD P =
0.012). Sediment B concentrations were higher in fall than in
spring (ANOVA, Tukey’s HSD P < 0.05), and higher in spring
2016 than in spring 2017. The concentration of B in streambed
sediment did not differ among sDII categories after accounting
for season and year. The lack of any significant difference in
geochemical OG tracers between the lowest sDII category sites
with very little or no current or historic OG development and
those higher along the sDII gradient suggests that these are the
naturally occurring concentrations for these elements, and not
indicative of OG activity.

Sediment Microbial Communities. No significant changes in stream-
bed microbial diversity were observed in relation to sDII cat-
egory, season, or year, as measured by the Chao1 richness and
Shannon diversity metrics (Fig. 4). This finding is consistent
with ref. 31, which reports no observed changes in microbial
alpha diversity with proximity to OG activity in northeastern
Pennsylvania (31). No significant variation in microbial com-
munity structure was observed among sDII categories (Fig. 5A),
and no clear trends emerged to indicate changes to community
structure in relation to presence or density of shale gas activity
(SI Appendix, Table S9). Annual differences were not signifi-
cant (ADONIS, P = 0.88), nor were significant differences
among sDII categories observed when controlling for seasonal
variation (ADONIS, P = 0.8).
Several aqueous constituents were found to have a relation-

ship to site-level differences in streambed microbial community
structure during the spring (Fig. 5B and SI Appendix, Tables S10
and S11). Silver (Ag) and molybdenum (Mo) concentrations

were significantly related to microbial community structure;
however, this may be a statistical artifact, as Ag and Mo were
only present above the reporting limit in two and eight samples,
respectively (SI Appendix, Table S11). Ag and Mo concentrations
did not covary with OG-related parameters and did not have any
relationship to sDII categories (Fig. 5B), suggesting that they are
not reliable indicators of OG activity. In contrast to the relationship
of pH to changes in microbial community structure described in
ref. 32, pH did not play a significant role in differences in mi-
crobial community structure (ENVFIT, P > 0.05). No sediment
constituents were significantly related to variations in microbial
community structure.
Of the variables directly related to shale gas production used

in constructing the sDII (SI Appendix, Tables S2 and S4 and ref.
7), the mass of drill cuttings, volumes of gas and water pro-
duced, and volumes of drilling fluid and fracturing fluid used
had significant site-level relationships to community structure
during the spring (Fig. 5B; ENVFIT, P < 0.05). In addition,
significant relationships were identified between changes in
spring microbial community structure and Environmental Health
and Safety Violations and Pennsylvania Clean Stream Law Vio-
lations (SI Appendix, Table S8). The number and density of pipe-
line crossings (SI Appendix, Table S4) had a significant relationship
to changes in microbial community structure during the spring
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(Fig. 5B and SI Appendix, Table S11; ENVFIT, P < 0.05) but
not the fall (Fig. 5C). Runoff and sedimentation are higher
during spring than fall in this region (3), and we hypothesize
that the significant effects observed only during the spring
may be a proxy for increased runoff and sedimentation from
well pads, associated roads, road stream crossings, and pipe-
line stream crossings, given that we observed no indication of
any geochemical or biological tracer of produced water in stream
water or sediments. Additional research is required to determine
the validity of this hypothesis and to determine the role, if any, of
other unassessed factors, such as road use related to non-OG
activities.

Findings fromMacroinvertebrate Community Analysis.Macroinvertebrate
community structure differed between 2016 and 2017 (ADONIS,
P < 0.05); however, no significant differences in macroinvertebrate
community structure were observed among sDII categories (Fig.
6). Despite the differences in community structure between years,
total richness (Fig. 7A), richness of sensitive EPT taxa (as defined
by ref. 60) (Fig. 7B), Shannon Diversity (Fig. 7C), and Index of
Biotic Integrity (IBI) scores as defined in ref. 60 did not differ
between years or among sDII categories. Based on these find-
ings, no stream in our study would be rated as nonattaining
according to ref. 82.
Johnson et al. (33) suggest that changes in sedimentation as a

result of shale gas development may lead to changes in functional
feeding group (FFG) distributions, but we found no significant
relationships among sDII categories and FFG classifications after
accounting for annual differences (SI Appendix, Table S13).

Conclusions
This study hypothesized the existence of a quantifiable relation-
ship between the intensity of disturbance fromMarcellus Shale gas
development and changes in water chemistry, microbial com-
munity structure, and macroinvertebrate community composi-
tion in headwater streams in the PASF system. No quantifiable
relationships were identified between the intensity of OG de-
velopment, water composition, and the composition of benthic
macroinvertebrate and microbial communities. No definitive
indications that hydraulic fracturing fluid, flowback water, or
produced water have entered any of the study streams were
found. However, the role of sedimentation related to increased
traffic from OG development on unpaved roads, pipelines, and
well pads as a stressor of stream microbiota was identified as an
important relationship for further investigation.
Shale gas development in the PASF is closely overseen by the

Pennsylvania Department of Conservation and Natural Resources
(PADCNR) and PADEP, who have implemented a program of
frequent inspection to ensure permit requirements and lease
provisions, and BMPs (50) are followed. The BMPs employed by
PADCNR include holistically evaluating the potential effects of
development plans at the landscape level rather than by individual
well pad, increasing setback distances to streams and wetlands to
60 m (90 m for EV/HQ streams as defined by ref. 51) from the
30 m required by ref. 83, and defining practices for pad con-
struction, road improvement, and waste management (50). The
BOF monitoring program (49) quantifies the effects of shale gas
development on PASF, and uses the findings from this program to
continually evaluate and update BMPs (49, 50). We note that
∼32% of the spills of OG-related materials across the state of
Pennsylvania occurred within 100 m of a stream (84), and future
work applying the methods described here to multiple streams
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outside the PASF and in close proximity to spills is warranted. The
applicability of the findings of this study and the utility of the sDII
to predict impact from OG development to regions under differ-
ent regulatory regimes and with more varied land uses will require
further study.
This region-scale study integrates major and trace stream water

and bed sediment geochemistry, measures of microbial community
structure, and measures of benthic macroinvertebrate community
structure across multiple seasons and years. Previous studies have
shown significant effects downstream from discharges from mu-
nicipal and industrial wastewater treatment plants treating pro-
duced water (26, 30) and shale gas wastewater disposal facilities
(29), and large spill events (24, 28, 29), but the regional effects of
shale gas development on stream environments remain unclear.
Previous work has also shown an inability to confidently identify
an OG signal when faced with other land uses (8), which are more
likely to cooccur in a watershed as size increases.
Our unique study incorporates a stratified random sampling

design to assure sufficient representation of a gradient of disturbance

calculated from a wide range of parameters, and combines a broad
suite of geochemical and biological metrics. It provides a compre-
hensive, spatially rigorous, temporally controlled geochemical and
biological evaluation of headwater watersheds undergoing shale gas
development. Our results highlight the importance of understanding
the role of spatial and temporal heterogeneity and the need to ac-
count for other land uses in explaining variability in water chemistry
and biological measures of ecosystem health in regions undergoing
energy development.
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